

Контроллер расширения выходов

KP-16P

Руководство по эксплуатации

КГПШ 466514.035-03РЭ

По вопросам продаж и поддержки обращайтесь:

Астана +7(7172)727-132, Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40,Новосибирск (383)227-86-73, Уфа (347)229-48-12, Ростов-на-Дону (863)308-18-15, Нижний Новгород (831)429-08-12, Саратов (845)249-38-78

единый адрес: sba@nt-rt.ru caйт: skbpa.nt-rt.ru

Оглавление

1.Описание и работа	3
1.1 Назначение	
1.2. Технические характеристики	3
1.2.2 Порт связи.	
1.2.3 Индикация	
1.2.4 Конструктивное исполнение	3
1.2.5 Условия эксплуатации.	3
1.2.6 Показатели надежности.	
1.3 Состав изделия	4
1.4 Устройство и работа	4
2. Использование по назначению.	
2.1 Меры безопасности	4
2.2 Подготовка к работе	5
2.2.1 Подключение цепей телеуправления	5
2.2.2 Подключение внешних устройств к порту связи	5
2.3 Использование по назначению	5
Приложение 1. Протокол MODBUS для КР-16Р	7
Рис.1 Габаритно-присоединительные размеры КР-16Р	10
Рис.2 Плата контроллера при снятой верхней крышке с указанием назначения клемм	1 И
перемычек	11
Рис.3 Схема подключения КР к контроллеру ПЛК-84.M2 через интерфейс RS485	12
Рис.4 Подключение сигналов управления контроллера	13
Рис.5 Подключение КР к компьютеру при изменении настроек	13

Настоящее руководство по эксплуатации содержит сведения о конструкции, принципе действия и характеристиках контроллера расширения выходов KP-16P (далее по тексту KP).

В руководстве приведены указания, необходимые для правильной и безопасной работы КР, а также для оценки его технического состояния.

К работе с КР допускаются лица, изучившие настоящее руководство и прошедшие местный инструктаж по безопасности труда. КР может обслуживать лицо, имеющее квалификационную группу по технике безопасности не ниже 3.

1.Описание и работа

1.1 Назначение.

Контроллер расширения выходов КР-16Р предназначен для функционирования в информационно-управляющих системах (АСУТП, SCADA-системы, системы автоматизированного коммерческого учета энергоносителей, системы телемеханики и т.п.) в качестве устройства дистанционного управления и взаимодействия с более высокими уровнями систем, в том числе ПЛК-84.М2, ТК-166.02, ТК-84.М1.

1.2. Технические характеристики.

1.2.1 Выходы

KP имеет 16 каналов управления. Все каналы гальванически развязаны. Коммутируемые сигналы имеют следующие параметры:

- переменное напряжение до 250В, ток до 3А;
- постоянное напряжение до 40В, ток до 3А;
- время переключения не более 10 мс.

1.2.2 Порт связи.

КР имеет порт связи RS-485 с гальванической развязкой.

Протокол обмена – MODBUS.

Скорость обмена - до 38400 бод.

Количество объединяемых устройств - до 32.

Длина линии связи до 1500м.

1.2.3 Индикация.

KP имеет 2 светодиодных индикатора на правой боковой панели, отражающих исправное состояние контроллера и обмен данными с управляющим компьютером.

1.2.4 Конструктивное исполнение.

KP изготавливается в металлическом корпусе для настенного монтажа. Чертеж корпуса KP приведен на рис.1.

Габаритные размеры корпуса - 261х117х44мм.

1.2.5 Условия эксплуатации.

Питание КР осуществляется от сети переменного тока напряжением (187-242)В; частотой $50\pm1\Gamma$ ц. Потребляемая мощность - не более 15Вт.

Степень защиты КР от воздействия окружающей среды – IP50.

КР предназначен для работы в следующих рабочих условиях:

- температура окружающего воздуха от минус 40°C до +60°C;
- верхнее значение относительной влажности воздуха 95% при температурах ниже +35°C, без конденсации влаги.

1.2.6 Показатели надежности.

Наработка КР на отказ – 30000 часов. Средний срок службы – не менее 12 лет.

1.3 Состав изделия

Наименование	Обозначение	Кол-во	Примечан
			ие
Контроллер КР-Д16Р	КГПШ 466514.035-03ТУ	1	
Руководство по эксплуатации	КГПШ 466514.035-03РЭ	1	
Паспорт	КГПШ 466514.035-03ПС	1	
Программа изменения настроек	КГПШ 466514.035ПО	1	
KR_PROG.EXE			
Преобразователь интерфейсов	КГПШ 407374.016РСМ		По доп.
232/485-PCM			заказу
Преобразователь интерфейсов IP-RS	КГПШ 407374.019ТУ		По доп.
			заказу

1.4 Устройство и работа

KP представляет собой специализированную одноплатную микро-ЭВМ, адаптированную для выполнения задач управления объектом, обработки и передачи информации.

По заданному алгоритму КР управляет включением/выключением мощных реле, предназначенных для управления внешними силовыми цепями.

Передача информации и объединение КР и других устройств производится через интерфейс RS-485. Протокол обмена — MODBUS, описание которого приведено в Приложении 1.

КР выводит на светодиодные индикаторы «Контроль» и «Передача» состояние своей работы.

2. Использование по назначению.

2.1 Меры безопасности

При работе с КР опасным производственным фактором является напряжение 220 В в силовой электрической цепи.

При эксплуатации КР необходимо соблюдать требования «Правил эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».

К эксплуатации КР допускаются лица, достигшие 18 лет, имеющие группу по электробезопасности не ниже 3, удостоверение на право работы на электроустановках до 1000 В, изучившие настоящее руководство и прошедшие инструктаж по технике безопасности на рабочем месте.

При обнаружении внешних повреждений КР или сетевой проводки следует отключить прибор до выяснения причин неисправности специалистом по ремонту.

В процессе работ по монтажу, пусконаладке или ремонту КР запрещается:

- производить смену электрорадиоэлементов во включенном приборе;
- использовать неисправные электрорадиоприборы, электроинструменты, либо без подключения их корпусов к шине защитного заземления.

К работе с КР допускаются лица, изучившие настоящее руководство и прошедшие местный инструктаж по безопасности труда.

KP могут обслуживать лица, имеющие квалификационную группу по технике безопасности не ниже 3.

Розетка для подключения КР к питающей сети должна обеспечивать соединение заземляющего контакта сетевой вилки с контуром заземления.

2.2 Подготовка к работе

2.2.1 Подключение цепей телеуправления

Монтаж линий сигналов управления осуществляется на клеммы A1-A16, B1-B16, C1-C16 контроллера в соответствии со схемой, приведенной на рис.4., креплением «под винт».

Максимально допускаемое сечение проводника 2.5 кв.мм. Минимальное сечение определяется в соответствии с током нагрузки.

2.2.2 Подключение внешних устройств к порту связи

Связь КР с управляющим компьютером или контроллером более высокого уровня осуществляется через интерфейс RS485. Монтаж связной линии осуществляется креплением связного кабеля на клеммы, маркированные А и В. Всего с контроллером верхнего уровня (например, ПЛК-84.М2) могут работать до 4 устройств КР-16Р. При этом каждый контроллер КР-16Р должен иметь уникальный сетевой номер, который задается перемычками N0, N1 на плате контроллера (рис.2) в двоичном коде. Наличие перемычки соответствует лог.0 в соответствующем разряде адреса, отсутствие перемычки – лог.1.

Интерфейс RS485 позволяет объединить до 32 устройств на одной линии связи. Для программирования адреса по всему адресному пространству в регистр базового адреса контроллера необходимо записать соответствующее смещение, используя команды протокола MODBUS (Приложение 1) или программу KR_PROG.EXE..

Схема соединения блоков КР и ПЛК-84.М2 приведена на рис.3.

При подключении контроллера к физической линии (экранированная витая пара длиной до 1500м) следует корректно установить согласующую нагрузку в устройстве, находящемся на конце связного кабеля. В схеме на рис.3 согласующая нагрузка устанавливается в ПЛК-84.М2 (перемычка между клеммами В и Т – установлена) и крайнем в сети КР (установлена перемычка Т, показанная на рис.2).

2.3 Использование по назначению

После подсоединения выходных сигналов к управляемому объекту и сигналов интерфейса RS-485 к другим объектам системы необходимо проверить системные установки KP.

Предприятие-изготовитель выпускает контроллер со следующими первоначальными установками, запрограммированными в EEPROM:

- базовый адрес контроллера 40(hex). Адрес контроллера вычисляется как сумма базового адреса и значения перемычек N0, N1 (0..3), т.е. перемычками можно задать 4 различных адреса при одном базовом адресе;
 - скорость 9600 бод, 8 бит, четность, 1 стоп;
 - задержка передачи и максимально допустимая пауза между символами при приеме 3.5 символа;
 - выключен алгоритм определения аварии питания (см. Приложение 1).

При установленной перемычке S задается режим работы, независимо от параметров, запрограммированных в EEPROM и определяемый версией программного обеспечения.

Внимание! Перемычка "М" используются для программирования контроллера (см. Изменение первоначальных установок). <u>В режиме работы она должна быть</u> снята.

Для запуска контроллера необходимо установить адрес контроллера (перемычки N0-N1) и подать напряжение питания 220В на подключенный соответствующим образом маркированный сетевой кабель.

На плате контроллера имеются 2 светодиодных индикатора. При исправном функционировании КР индикатор «Контроль» мигает с частотой один раз в секунду. Индикатор «Передача» светится при передаче данных КР по сети телемеханики.

Для изменения настроек контроллера необходимо подключить КР к компьютеру согласно схеме рис.5 и воспользоваться программой KR_PROG.EXE, входящей в комплект поставки.

Для изменения настроек КР необходимо установить перемычку "M". При этом, вне зависимости от текущих настроек, разрешается запись в EEPROM и устанавливаются следующие параметры обмена:

- скорость 9600 бод;
- четность;
- длина слова 8 бит, 1 стоп;
- задержка на передачу и допустимая пауза между символами 4 мсек;
- номер КР − 1.

Приложение 1. Протокол MODBUS для KP-16P

Входные данные (к КР) / Выходные данные (от КР).

Поддерживаемые функции:

01 Read Output Status (Чтение статуса выходов).

КР имеет 16 дискретных выходов с адресами 0..15. «1»-значение выхода соответствует замкнутым контактам реле, «0»-соответственно разомкнутым контактам реле.

Формат запроса:	Пример	Формат ответа:	Пример
Адрес КР	40h	Адрес КР	40h
Функция	01	Функция	01
Начальный адрес (ст.)	00	Счетчик байт	02
Начальный адрес (мл.)	00(00-0Fh)	Данные(Выходы 7-0)	00
Количество (ст.)	00	Данные(Выходы F-8)	00
Количество (мл.)	10h(01-10h)	CRC	
CRC			

03 Read Holding Registers (Чтение регистров).

В КР имеется 23 двухбайтных регистра с адресами 10h...26h и 256 регистров EEPROM с адресами 100h..1FFh, содержащих информацию о настройках КР. Назначение регистров:

10h-1Fh - Режим работы выходов телеуправления (младший нибл адреса регистра соответствует номеру выхода, содержимое регистра, не равное нулю, определяет импульсный режим работы $1=\sim80$ мсек)

(в версии ПО 01 импульсный режим работы не поддерживается!)

20h-23h – служебные регистры

24h - Маска импульсных Телеуправлений (16 бит ст., мл.)

25h - Текущие Телеуправления (16 бит ст. мл.)

26h - Номер версии ПО (ст.)

100h - Регистр конфигурации КР (мл.) . (по умолчанию 00h) 0 бит –«1»-включен/«0»-выключен режим определения Аварии Питания (см. примечание в конце)

1-7 биты – резерв.

101h - Базовый адрес КР (мл.) (по умолчанию 40h). Адрес КР вычисляется как сумма базового адреса и значения перемычек N0..N1 (0..3), т.е. перемычками можно задать 4 различных адреса при одном базовом адресе.

102h - Конфигурация последовательного порта (мл.) (по умолчанию 9600, четность) бит 2-0: скорость порта

000 – 38400 бод

001 – 19200 бод

010 – 9600 бод

011 - 4800 бод

100 – 2400 бод

101,110,111-резерв

3 бит: «0»-нет/ «1»-есть четность

4 бит: «0»-нечет/ «1»-чет

длина слова – 8 бит, 1 стоп

- 103h Период импульсного управления (мл.) мсек. (по умолчанию 80d ~80мсек)
- Задержка на передачу (ст.) мсек= значение байта х 307.2/ скорость(бод) . (по умолчанию 80h)
 - Допустимая пауза между символами (мл.) мсек= значение байта х 307.2/ скорость(бод) . (по умолчанию 80h)
- 105h Время разделения вкл./откл. каналов (мл.) х2 мсек (по умолчанию 0Ah). **Изменять не рекомендуется!!!**

106h - Время сброса ТУ при отсутствии обмена (мл.) сек. (по умолчанию 15 сек) 107h-1FFh – Резерв

Формат запроса:	Пример	Формат ответа:	Пример
Адрес КР	40h	Адрес КР	40h
Функция	03	Функция	03
Начальный адрес (ст.)	00 (00,01)	Счетчик байт	04
Начальный адрес (мл.)	10h(00h-FFh)	Регистр 10 (ст.)	FFh
Кол-во регистров (ст.)	00	Регистр 10 (мл.)	FFh
Кол-во регистров (мл.)	02(01-17h)	Регистр 11 (ст.)	05
CRC		Регистр 11 (мл.)	40h
		CRC	

Примечание: Данные регистров в ответе передаются как 2 байта на регистр. Для каждого регистра первый байт содержит старшие биты, второй байт содержит младшие биты.

05 Force Single Coil (Установка единичного выхода телеуправления в ON или OFF).

Формат запроса:	Пример	Формат ответа:	Пример
Адрес КР	40h	Адрес КР	40h
Функция	05	Функция	05
Адрес выхода (ст.)	00	Адрес выхода (ст.)	00
Адрес выхода (мл.)	00(00-0Fh)	Адрес выхода (мл.)	00(00-0Fh)
Данные (ст.)	00(FFh)	Данные (ст.)	00(FFh)
Данные (мл.)	00	Данные (мл.)	00
CRC		CRC	

06 Preset Single Register (Запись единичного регистра).

Формат запроса: Пример Формат ответа:	: Пример
Адрес КР 40h Адрес КР	40h
Функция 06 Функция	06
Адрес регистра (ст.) 00 Адрес регистра	и (ст.) 00
Адрес регистра (мл.) 10h(10h-26h) Адрес регистра	и (мл.) 10h(10h-26h)
Данные (ст.) 00(00-FFh) Данные (ст.)	00(00-FFh)
Данные (мл.) 00(00-FFh) Данные (мл.)	00(00-FFh)
CRC CRC	

Примечание: Запись возможна только в регистры 10h-1Fh,24h,25h и в EEPROM при установленной перемычке "M" по адресам 100h-1FFh.

15(0F Hex) Force Multiple Coils (Установка выходов телеуправления в ON или OFF).

Формат запроса:	Пример	Формат ответа:	Пример
Адрес КР	40h	Адрес КР	40h
Функция	0Fh	Функция	0Fh
Адрес выхода (ст.)	00	Адрес выхода (ст.) 00
Адрес выхода (мл.)	00(00-0	OFh) Адрес выхода (мл.) 00(00-0Fh)
Кол-во выходов(ст.)	00	Кол-во выходог	в(ст.) 00
Кол-во выходов(мл.)	10h(01	-10h) Кол-во выходог	в(мл.) 10h(01-10h)
Счетчик байт	02 (01-	02) CRC	

Данные для установки(вых 7-0) 00(00-FFh) Данные для установки(вых F-8) 00(00-FFh) CRC ---

Примечание: Каждому выходу телеуправления соответствует один бит данных -"0" состояние OFF, "1" состояние ON.

17 (11НЕХ) Чтение идентификатора подчиненного.

Содержание байтов данных в ответе специфично для каждого типа контроллеров. Формат ответа для КР-16Р показан ниже.

Формат запроса:	Пример	Формат ответа:	Пример
Адрес КР	42h	Адрес КР	42h
Функция	11h	Функция	11h
CRC		Счетчик байт	04
		Идентификатор у-ва	40h
		Индикатор пуска	xx(0-OFF,FF-ON)
		Счетчик (ст.)	XX
		Счетчик (мл.)	XX
		CRC	

Примечание: В поле "счетчик" содержится информация о количестве принятых пакетов после включения питания.

Примечание: алгоритм обнаружения аварии питания может быть включен или выключен путем установки бита в *Регистре конфигурации КР (100h)*. При включении режима после подачи или сбоя питания КР на любую команду MODBUS (кроме 17) возвращает сообщение об ошибке с кодом ошибки FFh (после аварии питания все регистры обнуляются). В нормальный режим КР переходит после получения команды 17 *Чтение идентификатора подчиненного*.

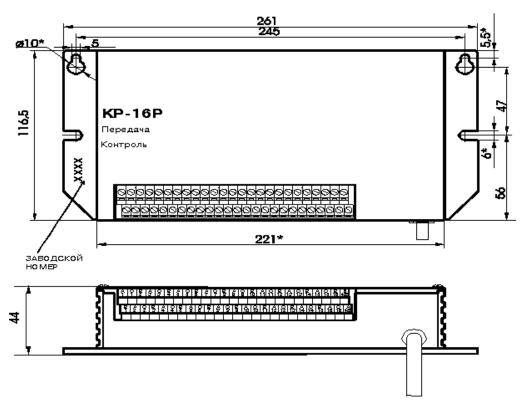


Рис.1 Габаритно-присоединительные размеры КР-16Р

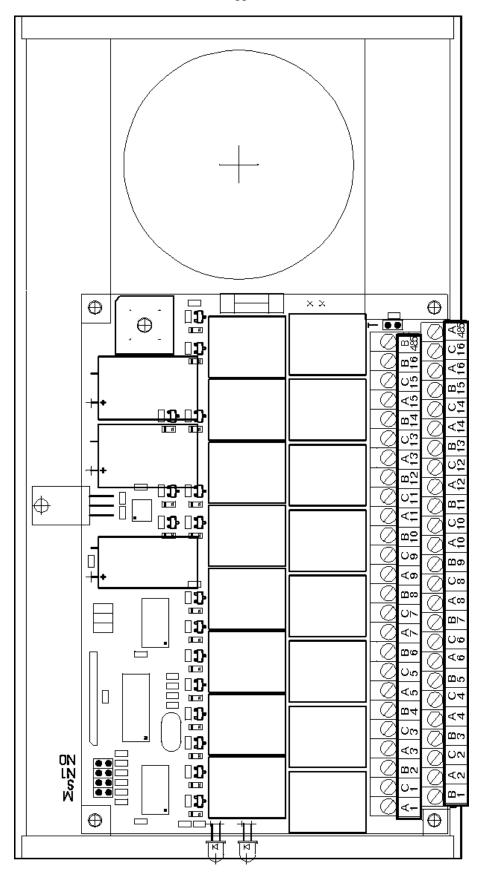


Рис.2 Плата контроллера при снятой верхней крышке с указанием назначения клемм и перемычек.

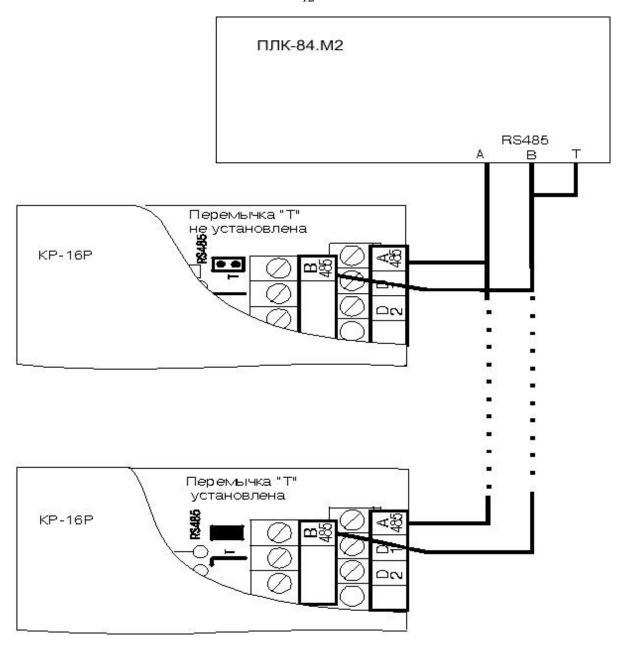
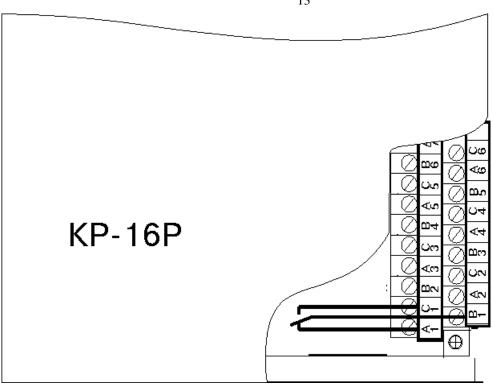



Рис.3 Схема подключения КР к контроллеру ПЛК-84.М2 через интерфейс RS485

- A(I) нормально замкнутый контакт канала I
- B(I) –перекидной контакт канала I
- C(I) нормально разомкнутый контакт канала I

Рис.4 Подключение сигналов управления контроллера

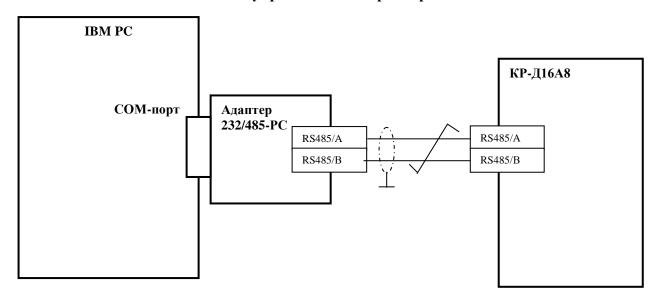


Рис.5 Подключение КР к компьютеру при изменении настроек

По вопросам продаж и поддержки обращайтесь:

Астана +7(7172)727-132, Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40,Новосибирск (383)227-86-73, Уфа (347)229-48-12, Ростов-на-Дону (863)308-18-15, Нижний Новгород (831)429-08-12, Саратов (845)249-38-78

единый адрес: sba@nt-rt.ru caйт: skbpa.nt-rt.ru